1. 对某单位的100名员工进行调查,结果发现他们喜欢看球赛和电影、戏剧。其中58人喜欢看球赛,38人喜欢看戏剧,52人喜欢看电影,既喜欢看球赛又喜欢看戏剧的有18人,既喜欢看电影又喜欢所戏剧的有16人,三种都喜欢看的有12人,则只喜欢看电影的有( )。
A.22人 B.28人 C.30人 D.36人
2. 甲、乙、丙、丁四人共有 251 张邮票。已知甲的邮票比乙的 2 倍多 2 张,比丙的 3倍多 6 张,比丁的 4 倍少 16 张,甲的邮票数最多,那么甲有多少张邮票?( )
A.120 B.60 C.140 D.34
3. 有三堆砝码,第一堆中每个砝码重 3 克,第二堆中每个砝码重 5 克,第三堆中每个砝码重 7 克。要取砝码总重量为 130 克,问最少取多少个?( )
A.18 B.20 C.22 D.24
1. A【解析】解答此题的关键在于弄清楚题中的数字是怎样统计出来的。一个人喜欢三种中的一种,则只被统计一次;一个人如喜欢两种,则被统计两次,即被重复统计一次;一个人如喜欢三种,则被统计三次,即喜欢看球赛、电影和戏剧的人数中都包括他,所以他被重复统计了两次。总人数为100,而喜欢看球赛、电影和戏剧的总人次数为:58+38+52=148,所以共有48人次被重复统计。这包括4种情况:(1)12个人三种都喜欢,则共占了36人次,其中24人次是被重复统计的;(2)仅喜欢看球赛和戏剧的,题中交待既喜欢看球赛又喜欢看戏剧的共有18人,这个数字包括三种都喜欢的12人在内,所以仅喜欢看球赛和戏剧的有6人,则此6人被统计了两次,即此处有6人次被重复统计;(3)仅喜欢看电影和戏剧的,题中交待既喜欢看电影又喜欢看戏剧的有16人,这个数字也应包括三种都喜欢的12人在内,所以仅喜欢看电影和戏剧只有4人,即此处有4人被重复统计。(4)仅喜欢看球赛和电影的,此类人数题中没有交待,但我们可通过分析计算出来。一共有48人次被重复统计,其中三种都喜欢的被重复统计了24人次,仅喜欢看球赛和戏剧的被重复统计了6人次,仅喜欢看电影和戏剧的被重复统计了4人次,则仅喜欢看球赛和电影的被重复统计的人次数为:48-24-6-4=14,这也就是仅喜欢球赛和电影的人数。一共有52人喜欢看电影,其中12人三种都喜欢,4人仅喜欢看电影和戏剧两种,14人仅喜欢看球赛和电影两种,则只喜欢看电影的人数为:52-12-4-14=22。
2. A【解析】根据题意可知甲的邮票数分别是 2、3、4 的倍数,即是 12 的倍数,结合选项,排除 C 、D;又甲的邮票数最多,所以有 4×甲的邮票数?251,即甲的邮票数多于 62 张,排除B,故选A。
3. B【解析】7 克的砝码要尽可能的多,130÷7=18……4,18 个 7 克砝码,余下的 4 克无法用其他砝码搭配,当用 17 个 7 克砝码时,余 11 克,需要一个 5 克两个 3克搭配便可。所以,最少取 17+2+1=20 个。