1.有六个袋子,已知其中三个袋子每个袋子各装有4个黑球和5个白球,另外三个袋子每个袋子各装有7个蓝球和2个黄球,问至少要摸多少个球才能保证一定摸出3个黄球?(
A.20 B.24 C.48 D.51
2.254个志愿者来自不同的单位,任意两个单位的志愿者人数之和不少于20人,且任意两个单位志愿者的人数不同,问这些志愿者所属的单位数最多有几个?( )
A.17 B.15 C.14 D.12
3.甲、乙、丙三人打羽毛球,每一局由两人上场,另一人做裁判。第一句抽签决定裁判,往后每一局的比赛在上一局的胜者和上一局的裁判之间进行。打了若干场之后,甲胜了10局,则乙和丙各负了8局,则他们至少打了( )局
A.20 B.21 C.22 D.23
参考答案与解析:
1.A【解析】最值问题。构造最不利情形,先从任意4个袋子中各摸一个球,并且摸出的球都不是黄球,但是根据题意,我们知道有黑、白球的袋子肯定不会有黄球,因此可以确定哪两个袋子里面有黄球,且这时至少摸了1个蓝球,因此从有两个黄球的袋子里分别取出8个球,就可以保证至少有3个黄球。因此至少要摸4+8+8=20(个)球。
2.B【解析】已知总人数,要求满足所属的单位数最多,则每个单位的人数从允许范围的最小值开始取值且尽量接近。考虑到任意两个单位的人数和不少于20人,那么每个单位的平均人数不小于10,而10+11+12+……+24=(10+24)×15÷2=255,则取9、11、12、13、……、24时刚好满足题意,所属的单位数最多有15个。 故正确答案为B。
3.C【解析】根据题目,乙负了8局,说明乙做裁判至少8局,因此甲和丙打了8局.同理,丙负了8局,丙做裁判至少8局,说明甲和乙打了8局,因此甲,共打了8+8=16局,而甲胜了10局,说明甲输了6局,因此说明乙和丙打了6局,因此三人至少共打8+8+6=22局